Welcome, visitor! [ Login

Complete information about Cocoa plant

PlantationCrops October 30, 2015

Cultivation of Cocoa: Complete guide on Cocoa plant farming involves in seed treatment, planting, pest management, irrigation, harvesting and uses.

Scientific name of Cocoa (Theobroma cacao L.) Malvaceae:

Theobroma cacao also cacao tree and cocoa tree, is a small (4–8 m (13–26 ft) tall) evergreen tree in the family Malvaceae, native to the deep tropical regions of Central and South America. Its seeds, cocoa beans, are used to make cocoa mass, cocoa powder, and chocolate.

The flowers are produced in clusters directly on the trunk and older branches; this is known as cauliflory. The flowers are small, 1–2 cm (0.39–0.79 in) diameter, with pink calyx. The floral formula is ✶ K5 C5 A(5°+5²) G(5). While many of the world’s flowers are pollinated by bees (Hymenoptera) or butterflies/moths (Lepidoptera), cacao flowers are pollinated by tiny flies, Forcipomyia  midges in the order Diptera. The fruit, called a cacao pod, is ovoid, 15–30 cm (5.9–11.8 in) long and 8–10 cm (3.1–3.9 in) wide, ripening yellow to orange, and weighs about 500 g (1.1 lb) when ripe. The pod contains 20 to 60 seeds, usually called “beans”, embedded in a white pulp. The seeds are the main ingredient of chocolate, while the pulp is used in some countries to prepare refreshing juice, smoothies, jelly, and nata. The fermented pulp, until recently discarded in Ecuador, the Dominican Republic, and Peru, is now being distilled there into a popular alcoholic beverage sold in the United States. Each seed contains a significant amount of fat (40–50%) as cocoa butter. Their most noted active constituent is theobromine, a compound similar to caffeine.Cacao production has increased from 1.5 million tons in 1983-1984 to 3.5 million tons in 2003-2004, almost entirely due to the expansion of the production area rather than to yield increases. Cacao is grown both by large agroindustrial plantations and small producers, the bulk of production coming from millions of farmers who have a few trees each.

A tree begins to bear when it is four or five years old. A mature tree may have 6,000 flowers in a year, yet only about 20 pods. About 1,200 seeds (40 pods) are required to produce 1 kg (2.2 lb) of cocoa paste.

 

 Cocoa leaves, Beans & Bean Powder

 

Historically, chocolate makers have recognized three main cultivar groups of cacao beans used to make cocoa and chocolate. The most prized, rare, and expensive is the Criollo group, the cocoa bean used by the Maya. Only 10% of chocolate is made from Criollo, which is arguably less bitter and more aromatic than any other bean. The cacao bean in 80% of chocolate is made using beans of the Forastero group, the main and most ubiquitous variety being the Amenolado variety, while the arriba variety (such as the Nacional variety that was recently discovered) are less commonly found in Forestero produce. Forastero trees are significantly hardier and disease resistant than Criollo trees, resulting in cheaper cacao beans. Trinitario, a hybrid of Criollo and Forastero, is used in about 10% of chocolate. The criollo cacao beans from Chuao in Aragua, Venezuela are widely regarded as some of the finest in the world. In November 2000, the cacao beans coming from said region were awarded an appellation of origin under the title “Cacao de Chuao” (from Spanish-cacao of Chuao) effectively making this one of the most expensive and sought after types of cacao.

A new, genetically based classification of 10 groups may well help breeders to create new varieties that are both pest- and disease-resistant and contain valued flavours.

Major cocoa bean processors include Hershey’s, Nestlé and Mars, all of which purchase cocoa beans via various sources. In June 2009, Mars Botanicals, a division of Mars, launched Cirku, a cocoa extract product that provides cocoa flavanols made with a patented process that contains a high level of phytonutrients.

Cocoa is an important commercial plantation crop of the world. Cocoa is a crop of humid tropics and so it was introduced as a mixed crop in India in areas where the environments suit the crop. It is cultivated in coconut and arecanut plantations large scale from 1970 onwards. It is grown as an under- storey intercrop with sufficient shade in southern states of India. In India, the current production is about 12,000 Metric Tonnes and Tamil Nadu produces about 400 Metric Tonnes.

Climate and soil:

The natural habitat of the cocoa tree is in the lower storey of the evergreen rainforest, and climatic factors, particularly temperature and rainfall, are important in encouraging optimum growth. Cocoa is a perennial crop, and it can withstand different seasonal variations with good health and yield potential. Cocoa is normally cultivated at altitudes upto 1200 m above MSL with an annual rainfall of 1000mm to 2000mm and a relative humidity of 80 % with maximum 350C and minimum temperature of 150C. Cocoa can be grown as intercrop in coconut and arecanut gardens. It is predominantly grown on red laterite soils. It thrives well on wide range of soil types with pH ranging from 4.5- 8.0 with optimum being 6.5- 7.0.

Varieties:

There are three varietal types in cocoa namely Criollo, Forastero and Trinitario. Forastero types are known to perform well under Indian conditions.  Kerala Agricultural University has released 7 improved clones of Forestero types namely CCRP – 1, CCRP – 2, CCRP – 3,               CCRP – 4, CCRP– 5, CCRP – 6 and CCRP – 7 and 3 hybrids CCRP – 8, CCRP – 9, CCRP – 10. Central Plantation Crops Research Institute, Vittal has released one clone named as VTLCC-1 and 4 hybrids namely VTLCH1, VTLCH2, VTLCH3 and VTLCH4.  Based on survey made during 2008-2012 in TamilNadu, totally 151 trees were identified for yield and quality. These trees were continuously evaluated and best performing ten elite trees were selected and named as TNAUCC1 to TNAUCC10. The clonal propagation of these trees are in progress.

Propagation:

Cocoa can be propagated by seeds. Seeds are to be extracted from pods. Cocoa pods take 150-170 days from pollination to attain the harvest stage. The stage of maturity is visible from the change of pod colour from green to yellow (Forestero) and red to yellow (Criollo). Collection of seeds from biclonal or polyclonal seed gardens involving superior self-incompatible parents is recommended to ensure genetic superiority of planting materials.  In TNAU coconut nursery, a poly clonal seed garden with 7 improved clones of KAU (CCRP1 to CCRP7)  and Vittal cocoa clone 1 and 4 hybrids namely VTLCH1 to VTLCH4.
Criteria for selection of mother plants for collection of seeds:

  1. Forastero type (green- immature, yellow- ripe) having medium to large pods of not less than 350 g weight, smooth or shallow furrows on the surface without prominent constriction at the neck can be selected.
  2. Husk thickness of pods should be less than 1 cm.
  3. Pod value (number of pods to give 1 kg wet beans) should be less than 12.
  4. Number of beans per pod has to be more than 35.
  5. Bean dry weight to be more than 1 g.
  6. The best seeds for sowing are those from the middle of the pod.

Harvested seed pods can be stored in shade upto one week. Viviparous germination is reported in ripe cocoa which may affect the percentage of germination if it is stored beyond one week. Seeds are to be sown immediately after extraction from the pods. Viability of the beans can be extended for some more days if freshly extracted seeds are stored in moist charcoal and packed in polybags. Other alternative is extracting beans, removing the testa and packing in polythene bags.

Potting media:

Red Soil + Sand + FYM @ 2:1:1 + Super phosphate (5 kg/ton) was found to be best media for growth and development of cocoa seedlings

Vegetative propagation:

As the seedling progenies showed wider genetic variability, to maintain true to types, asexual or vegetative propagation is followed. Grafting and budding are being followed in multiplication of cocoa.  It also ensures multiplication of identified high yielding clones in large quantities. Though vegetative propagation of cocoa by budding, rooting of cutting and grafting are feasible, the widely accepted methods in India are budding and grafting.

Selection of planting materials:
When seedlings are used as planting, select vigorous and healthy seedlings from polyclonal garden. The planting material should be of 4-6 month old seedling or grafted or budded plant.  The seedling/grafted/budded plant should be planted in the centre of the pit, not too deep. While planting grafts, polythene strip tied over graft joint should be removed and the joint should be above the soil.

  

Cocoa Seedlings, Budded & Grafted Plants

Time and method of planting:

Cocoa is a shade loving plant. During its seedling period it requires about 50% shade and later the shade requirement is about 40%. The plant is grown as a mixed crop with other plants like spices and rubber mainly under rainfed conditions. Cocoa is planted as an intercrop in coconut and arecanut gardens.

Pits of 50 cm x 50 cm x 50 cm are dug, allowed to weather for one month and refilled with topsoil and 15-20 kg of compost of FYM to ground level. Tear off the polybags carefully, place the soil ball with the seedlings in the planting hole with minimum disturbance and press the soil around firmly. Planting should coincide with the onset of monsoon, but in places where irrigation is resorted to, flexibility in the time of planting is possible.

Irrigation in cocoa:

Cocoa is usually grown in areas where water availability is adequate. Cocoa plants are sensitive to drought, irrigation in such cases becomes essential. During summer, as it exists in Southern India, the crop requires irrigation at weekly intervals. When it is grown as mixed crop with arecanut, the crop is to be irrigated once in a week during November-December, once in 6 days during January-March and once in 4-5 days during April-May with 175 litres of water.

Soil nutrient management:

Soil nutrient management is critical to the general health of the tree, particularly where cocoa is grown on poor soils with low nutrient levels. The fertility of soils under cocoa plantations with complete canopy formation can be maintained or sustained for a fairly long time due to the ability of cocoa fallen leaves to recycle nutrients back into the soil and decomposition of leaf litter.  However, continuous harvesting will eventually result in loss of soil nutrients

Fertilizer schedule for coco:

An annual application of the following schedule should be applied in two equal splits, the first dose in April- May and the second dose in September- October i.e. pre and post monsoon applications.

Method of application:

Fertilizer may be applied uniformly around the base of the tree up to a radius of 30 cm during the first year, forked and incorporated into the soil. For grown up plants the best method is to rake and mix the fertilizers with soil in shallow basins of around 75 cm. This radius may be increased gradually upto 150 cm after third year. Care should be taken not to spill the inorganic fertilizers on the trunk, branches or leaves of young trees in order to avoid burning.

Drip (Fertigation):

Fertilizers can be applied through drip irrigation system (fertigation). Weighed quantity of fertilizers as per schedule was dissolved in water and then injected to sub-main through venturi and then to lateral lines as per treatment. Drip irrigation is done once in 2 days. The fertilizers are applied through drip irrigation at weekly intervals. 100:40:140 kg of N, P and K are applied through drip and fertigation in different stages of crop growth as detailed below.

*Water soluble fertilizers :   All 19(19% N: 19 % P: 19 % K), Mono – Ammonium Phosphate (MAP – 12:61:00 % NPK), Proprietary water Soluble form of N and K fertilizers containing 13% N and 45 % K (Multi ‘K’) and Urea (46% N)

100 % RDF as WSF through fertigation by drip irrigation recorded more pod weight (486.82 g), number of pods tree-1­ (56.87), Pulp + bean weight pod-1 (148.79 g), number of beans per pod (48.62), single bean fresh weight (3.10g), single bean dry weight (1.24 g) and dry weight of the beans per tree (3.429 g).

Nutrient management in cocoa:

Sixteen plant nutrients are essential for proper crop development. Each is equally important to the plant, yet each is required in vastly different amounts. These differences have led to the grouping of these essential elements into three categories; primary (macro) nutrients, secondary nutrients, and micronutrients.

Primary (macro) nutrients:

Primary (macro) nutrients are nitrogen, phosphorus, and potassium. They are the most frequently required in a crop fertilization program. Also, they are need in the greatest total quantity by plants as fertilizer.

Secondary Nutrients:

The secondary nutrients are calcium, magnesium, and sulphur. For most crops, these three are needed in lesser amounts that the primary nutrients. They are growing in importance in crop fertilization programs due to more stringent clean air standards and efforts to improve the environment.

Micronutrients:

The micronutrients are boron, chlorine, cooper, iron, manganese, molybdenum, and zinc. These plant food elements are used in very small amounts, but they are just as important to plant development and profitable crop production as the major nutrients. Especially, they work “behind the scene” as activators of many plant functions like chlorophyll production, carbohydrate formation, cell division and starch formation etc.,

Micronutrient deficiency:

Zinc Deficiency:

Symptoms are chlorosis of the leaves. This appears   in patches and in advanced stages the green areas are found only along the vein margins, giving a vein banding   appearance to the leaves. Affected leaves show mottling and crinkling with wavy margin. Most of the younger leaves become narrow and sickle shaped showing characteristic ‘little leaf’ symptom.

Symptoms on twigs include rosette and dieback. Shortening of internodes causes a rosette type of growth.

Management: Foliar spray of a mixture of 0.3%  (3gm in 10 litter of water) Zinc Sulphate and 0.15% (w/v) lime.

Training and pruning:

Pruning and shade management are essential in cocoa. Pruning involves thinning of branches and removal of  old or  dead stems, whilst shade management involves leaving forest trees and/or planting shade trees to optimise the light intensity in the cocoa grove.
Pruning serves many purposes, including:

  1.  It determines the shape of the tree.  It is important that the tree is shaped to facilitate  local

Management practices:

  1. It maximizes the nutrient distribution towards pods. By cutting away new and unproductive chupons on mature trees, the pod size will be increased.
  2.  Thinning the cocoa canopy causes more light to filter to the centre of the tree, and more air circulation, whereby Black Pod disease can be reduced.

Pruning and height control:

The basic aim of pruning cocoa trees is to encourage a tree structure that allows sunlight  to  filter  through  to  the  main  branches  and  trunk  (what  is  known  as  a jorquette)  to  stimulate  flowering  and  facilitate  harvesting. Pruning generally takes place twice a year. The first pruning is done after the main harvest (from April to July) and just before the rainy season, and the second pruning five months later, during the months of November and December.
Young  plants  should develop  a  jorquette  at  a  height  of    about  1  meter.    It has been found that increasing light in-tensity decreases the jorquette-height. If a jorquette is considered too low, it can be cut off. The strongest of the re-growing chupon can be selected and all others removed.  In  due  course,  this  chupon  will  produce  a  jorquette  at  a  higher  level. Vegetatively propagated plants generally form a jorquette at ground level.
Fan     branches  should  be  limited  to  3  to  4  to  allow  more  light  to  enter  and  decrease the  humidity  within  the  canopy.  Basal  chupons  should  be  removed  at  regular  intervals  and  all  lower  branches  that  form  or  bend  below  the  jorquette  should  be trimmed off. Furthermore  all  branches  within  60  cm  of  the  jorquette,  all  old  and  diseased branches  and  branches  growing  into  the  centre  of  the  tree  canopy  should  be  removed.  This should be  done  at  regular  intervals  through  maintenance  pruning.

All prunings should be left in the field to rot down, except the diseased ones. Diseased or unwanted branches with vascular die- back and water shoots are to be removed to maintain the health and vigour of the tees. It include removing all unnecessary chupons, dead branches, climbing plants, rodents- damaged and over ripe pods. Pruning the trees at 20 %  canopy removal will increase the number of flower cushions per tree and number of fruits per tree and it reduces the light transmission (12.72 %) and increases the  chlorophyll content (1.961 mg g-1)

Pruning of grafted plants:

Pruning of grafted plants is done, after first year of planting, primary pruning should be done to obtain a supporting framework of one or more upward growing main stems. Then drooping or inward growing branches are to be removed. Secondary pruning is suggested to develop well- shaped canopy and desired canopy should be maintained in umbrella shaped form with about 3.8 m to 4.2 m spread and 2.7 m height depending upon the space and main crop in which cocoa is under planted/grown. Pruning is usually done annually in August- September. The proper pruning of   cocoa   ensures   adequate   ventilation   in   garden;   maintain   tree   height,   makes   spraying   and harvesting operations easier. It also prevents damage during the harvesting operation for the companion crop.
To prevent the entry of fungi, fungicides are to be applied (Bordeaux paste) immediately after the pruning. Generally pruning is done after harvesting.

Plant protection in cocoa:

Pests and diseases are important risk to productivity and quality of harvest which in turn affects the returns to the farmers. Since cocoa is an introduced crop the more important for the farmer is to be clear about the pests and diseases and be able to identify the symptoms correctly.

Pest management:

1. Mealy bugs (Planococcus lilacinus, Planococcus citri, Paracoccus marginatus and Rastrococcus iceryoides):

It colonizes on the tender parts of the plant such as growing tips of the shoots, the terminal buds, the flower cushions, the young cherelles and mature pods. Feeding of mealy bugs induces cherelle wilt. Following control measures are recommended.

 

Cocoa mealybugs

When the infestation is lesser: Spraying of Neem Oil 3% or fish oil rosin soap 25g/litre

In case of severe incidence, spraying of any one of the following chemicals is recommended  : Dimethoate (2 ml/litre) , Profenophos (2 ml/litre), Chlorpyriphos (5 ml/litre), Buprofezin (2 ml/litre), Imidacloprid (0.6 ml/lit), Thiamethoxam (0.6g/litre)

In the area where P. marginatus alone occurs, field release of Acerophagus papayae, the encyrtid parasitoid @ 100 per hamlet is recommended as the best management strategy.

2. Tea mosquitoe bugs (Helopeltis antonii):

Infested pods develop circular water soaked spots around the feeding punctures. These punctures subsequently turn pitch black in color. Deformation of pods occurs because of multiple feeding injuries.

 

Helopeltis in Cocoa

Management:

  • When the infestation is lesser: Spraying of Neem Oil 3% is recommended.
  • In case of severe incidence, spraying of any one of the following chemicals is recommended: Imidacloprid (0.6 ml/lit) , Thiamethoxam (0.6g/litre), Profenophos (2 ml/litre), Carbaryl (2g/lit)

3. Flatid Plant hoppers:

Nymphs and adults suck the sap from flowers, tender shoots and pods. They excrete honey dew resulting in the development of sooty mould fungus on the leaves and pods.

Management: Foliar application of a newer molecule Thiacloprid @ 2 ml/litre twice at 5 days interval is recommended for the management of these flatid plant hoppers.

4. Aphids (Toxoptera aurantii and Aphis gossypii):

They colonize on the underside of tender leaves, succulent stem, flower buds and small cherelles.  Heavy infestation may occur during hot summer and after rainy season which brings about premature shedding of flowers and curling of leaves.

Management : Spraying of dimethoate @ 2 ml per litre

5.Hairy caterpillars (Lymantriya sp., Euproctis sp., Dasychira sp.,):

They cause serious leaf damage on seedlings and young trees.

Management: Foliar spray of acephate @ 2g/litre of water

6. Stem Girdler, Sthenias grisator:

Damage was done by female beetle which girdles the branches and inserts whitish spindle shaped eggs singly into the tissue in a slanting manner. Due to mechanical injury caused by girdling and oviposition, the branches above the girdle wither and dry.

 

Stem Girdler

Stem Girdler

Management:

  1. Swab Coal tar + Kerosene @ 1:2 or carbaryl 50 WP 20 g / litre (basal portion of the trunk – 3 feet height) after scraping the loose bark to prevent oviposition by adults.
  2. Hook out the grub from the bore hole and apply monocrotophos 36 WSC 5 to 10 ml/ bore hole (or) one celphos tablet (3 g aluminum phosphide)/bore hole (or) apply carbofuran 3G 5 g/bore hole and plug with mud.
  3. Injection of dichlorvas (DDVP) + monocrotophos solution into bore holes after removing the webs and subsequently sealing of the holes with clay gives satisfactory control of the pest.

7. Non- Insect pests:

Rats (Rattus rattus) and squirrels (Funambulus trisriatus and F. palmarum) are the major rodent pests of cocoa.  They cause serious damage to the pods. The rats usually gnaw the pods near the stalk portion whereas squirrels gnaw the pods in the center

Squirrel Damage

Squirrel Damage

Management:

  • The rats can be controlled by placing 10 g bromadiolone (0.005%) wax cakes or ripe banana stuffed with carbofuran on the branches of cocoa trees twice at an interval of 10-12 days.
  • Squirrels are best controlled by trapping with wooden or wire mesh single catch ‘live’ trap with ripe coconut kernel as the bait.

Diseases:

1. Seedling blight (Phytophthora palmivora):

The symptom develop on the leaves and stem of seedlings or budded plants. On leaves, small water soaked lesions appear which later coalesce in the blighting of leaves. On stem, water soaked lesions develop initially and later turn to black colour. Stem infection develop any point on the stem causing the death of seedlings.

Seedling blight

Seedling blight

 

Management:

Remove and destroy the affected seedlings. Spray with 1 percent Bordeaux mixture or 0.2% copper oxychloride just before the onset of monsoon and thereafter at frequent intervals.

2. Black Pod rot (Phytophthora palmivora):

Infection appears as chocolate brown spot, which spreads rapidly and soon occupies the entire surface of the pod. As the disease advances, a whitish growth of fungus consisting of fungal sporangia is produced over the affected pod surface. Ultimately, the affected pods turn brown to black. The internal tissues as well as the beans become discolored as a result of infection. The beans in the infected pods approaching ripeness may escape infection because they are separated from the husk on ripening.

Black Pod rot

Black Pod rot

Management:

Periodically remove the infected pods.  Spray 1 per cent Bordeaux mixture with on set of monsoon and also frequent intervals. Provide frequent drainage and regulate shade to increases aeration. Pseudomonas fluorescens (Pf1) liquid formulations @ 0.5% as soil and foliar spray (3 times per year- June, October & February) was found to be effective in reducing the Cocoa Pod rot and Stem canker.

Preparation of 1% Bordeaux mixture; 
The mixture of copper sulphate and lime was known as Bordeaux mixture

Procedure:

  1.  Dissolve one kilogram of copper sulphate in fifty litters of water in a plastic bucket
  2. Dissolve one kilogram of lime in fifty litters of water separately in a plastic bucket
  3. Pour copper sulphate solution into the lime water slowly with constant stirring using a wooden stick
  4. Test the mixture before use for the presence of free copper, which is harmful to the plant by dipping a polished knife in it.
  5.  If the blade shows a reddish colour, add more lime till the blade is not stained when dipped afresh in the mixture.
  6.  Always use wooden or earthen or copper vessels for the preparation of Bordeaux mixture.

Bordeaux paste:

Bordeaux paste consists of same constituents as that of Bordeaux mixture, but it is in the form of a paste as the quantity of water used is too little. It is prepared by mixing 1 kg of copper sulphate and 1 kg of lime in 10 liters of water. The method of mixing solution is similar to that of Bordeaux mixture.

3. Stem Canker (Phytophthora palmivora):

The cankers appear either on the main trunk, jorquettes or fan branches. The earliest symptom is the appearance of a greyish brown water soaked lesion on the outer bark. A reddish brown liquid oozes out from these lesions, which later dries up to form rusty deposits. The tissues beneath the outer lesion show reddish brown discoloration due to rotting.

Stem Canker

Stem Canker

Management:

It can be controlled in the initial stages by the excision of diseased bark followed by wound dressing with Bordeaux mixture or copper oxychloride paste .Wilted branches should be cut and removed.

4. Vascular Streak Dieback (VSD):

It is reported from some parts of Kerala. The first indication of the disease is a characteristic yellowing of one or two leaves on the second or third flush behind the growing tip. Diseased leaves fall within a few days of turning yellow and the other leaves on the shoot show similar symptoms. When the infected shoot is split lengthwise there is always a characteristic brown streaking.

Management:

The disease can be controlled by disposing diseased branches and regular pruning of chupons on the trunk. Cocoa nurseries should not be located near the diseased area. Avoid getting seedlings from diseased tracts. Kerala Agriculture University has developed some VSD resistant and high yielding varieties CCRP-1 to CCRP-7.

5.Cherelle wilt:

The shriveling and mummifying of some young fruits are a familiar sight in all cocoa gardens. In the early stages the fruits lose their lustre and in four to seven days they shrivel. The fruits may wilt but do not abscise. Many other factors like insects, diseases, nutrient competition and over production may also be associated with this problem. Hence, remedial measures will depend upon the nature of the causative factors involved.

Harvesting and Processing:

Cocoa produces flowers from the 3rd year of planting onwards and economic yield starts from 5 th year. Properly well maintained (irrigation/ nutrient management) tree yielded 1-2 kg of pods / tree/ year.  Pods take about 140 – 160 days to ripen. Generally, cocoa gives two main crops in a year, i.e. September – January and June to August. Offseason crops may be seen throughout the year especially under irrigated condition. The stage of maturity of the pod is best judged by change of color of pods. Pods that are green when immature turn yellow when mature and reddish pods turn yellow or orange. The change in color starts from the grooves on the pods and then spreads to the entire surface. . The harvesting is to be done at regular intervals of 10 -15 days. Avoid over ripening of pods.

Yield: 50-70 pods/tree/year

The pods are heaped together and kept under shade for 5-6 days to ensure uniform ripening. This reduces acidity and helps in development of a better flavor suited for chocolate making. Cocoa pods are collected at a central location, where pods are broken, husks removed and the white-yellowish seed masses are heaped together for fermentation. Fermentation takes about 5 to 7 days, depending on the season and temperature. Farmers sometimes mix the heap on the 2nd or 3rd day, to allow for aeration and a more uniform fermentation

For breaking the pods, wooden billets may be used. After breaking the pods crosswise, the placenta should be removed together with husk and the beans are collected for fermentation.  On an average 10-12 pods give 1 kg wet beans and 3 kg of wet beans (from 30-36 pods) give 1 kg of fermented and dried beans. Under normal cultivation practices, each cocoa tree yields about 1-2 kg annually.

Fermentation:

Fermentation of cocoa beans is essential to remove the edhering mucilaginous pulp to develop flavour and aroma precursors, reduce bitterness and kill the germ of the seed and to loosen the testa.  The process is simple but must be carried out  properly in order to get beans for good quality. Different methods of fermentation normally followed are 1. Box 2. Basket. However, in this box and basket methods are recommended depending on quality of bean to be fermented.

Box method:

The boxes of 60 cm X 60 cm X 45 cm made of wood and having reapers at the bottom to allow the sweating from the pulp to drain out and provide aeration are used. The boxes could be arranged in tiers for transferring beans from one to the next in line below. Two detachable wooden planks are provided on one side of the box for transferring (mixing) the beans by removing the planks.
The beans are loaded on fermentation box and covered with banana leaves or gunny bags. The mixing of beans is effected while transferring to the next box after 24 hours. The temperature of the fermentation mass will rise to 45 – 550C after about 48 hours of fermentation.
Every alternate day the beans under fermentation have to be properly mixed for uniform fermentation. This has to be continued for 6 days.

Basket methods:

In this method, Bamboo or cane baskets of suitable size could be used for fermenting small quantity of beans. One or two layers of banana leaves are placed at the bottom with provision to drain the sweating. The basket is filled with the beans and the surface is covered with banana leaves. A small weight is placed over the banana leaves. The basket is placed over a raised surface to facilitate drainage of the sweating for one day. Later the basket is covered with thick gunny bags. The beans are mixed thoroughly on the 3rd and 5th days and again covered with gunny bags. The fermentation will be completed at the end of 6th day and the beans withdrawn for drying.

End point of fermentation:

Well fermented beans will be plumpy and filled with reddish brown exudates. The testa becomes loosened from the cotyledons. When cut open, the cotyledons will have a brownish colored with lots of ridges and furrow appearance in the centre with a brownish ring in the periphery. When above 50 per cent beans in a lot show the above signs, it can be considered as properly fermented.

Drying:

During fermentation the cocoa flavour develops and the beans turn brown. After fermentation, the beans can be dried by sun drying. The fermented cocoa beans have considerable moisture (55 -69 %) and the drying rate is depend upon temperature and the airflow. Sun drying should be adopted as far as possible, as it gives superior quality produce  compared to that by artificial drying. The moisture content of well dried beans is around 6 – 7 %. Slow drying is preferable for better quality of the beans.

Grading and storage:

The flat, slate, shrivelled, broken and other extraneous materials are removed. The cleaned beans are packed in fresh polythene lined (150 – 200 gauge) gunny bags. The bags are kept on raised platform of wooden planks. The beans should not be stored in room where spices, pesticides and fertilizers are stored as they may absorb the odour from these materials.  

Bean quality:

Cocoa quality depends on various factors, but primarily on the  cocoa variety and the post-harvest handling. Generally, fine or flavour cocoa beans are produced from Criollo or  Trinitario varieties, while bulk cocoa beans come from Forastero trees.

Poor post-harvest handling can cause cocoa beans to be mouldy and/or germinated which reduces or diminishes the cocoa quality. Mouldy cocoa beans should be rejected on two counts, namely the tainting and  off-flavours  to the beans and possible contamination by mycotoxins (including ochratoxin).

Sponsored Links

Leave a Reply

Popular Ads Overall

  • No ads viewed yet.
error: Content is protected !!